Blood volume changes in skeletal muscle measured with power Doppler ultrasound during whole body exercise: reproducability and validity.

Published: 23-12-2015 Last updated: 15-05-2024

To investigate day-to-day reproducibility and validity of PD for assessment of skeletal muscle blood flow during exercise.

Ethical reviewApproved WMOStatusRecruitment stoppedHealth condition typeOther conditionStudy typeObservational non invasive

Summary

ID

NL-OMON42467

Source ToetsingOnline

Brief title Blood volume changes in skeletal muscle.

Condition

• Other condition

Synonym dysfunction arteries, vascular endothelium dysfunction

Health condition

endotheelfunctie arteriën

Research involving

Human

1 - Blood volume changes in skeletal muscle measured with power Doppler ultrasound d \ldots 14-05-2025

Sponsors and support

Primary sponsor: Maxima Medisch Centrum **Source(s) of monetary or material Support:** Stichting Vrienden van het Hart Zuidoost-Brabant en Stichting Maxima

Intervention

Keyword: blood volume, Exercise, power Doppler ultrasound, skeletal muscle

Outcome measures

Primary outcome

Reproducibility:

Difference and agreement (bias and limits of agreement) of changes in blood

volume assessed by PD in the vastus lateralis muscle during maximal and

submaximal exercise on two separate days.

Secondary outcome

Validity:

- Correlation between changes in PD-signal in the musculus vastus lateralis and

changes in blood flow (BF) in the afferent artery measured with pulsed wave

Doppler (PWD) during exercise.

- Correlation between changes in total hemoglobulin (tHb) measured with near

infrared spectroscopy (NIRS) and changes in PD-signal during exercise.

Study description

Background summary

One of the factors that influence exercise performance is the ability to augment blood flow to skeletal muscles during exercise. Therefore, assessment of blood flow changes in exercising muscles may provide important information on physiological limitations of exercise capacity in individual subjects (e.g. athletes, chronic disease). As such, Power Doppler (PD) is a technique capable of measuring changes in moving blood volume and may therefore be useful to assess changes in skeletal muscle perfusion. However, before PD can be used in every clinical practice, it is important to investigate the day-to-day reproducibility and to validate the PD signal with proven techniques.

Study objective

To investigate day-to-day reproducibility and validity of PD for assessment of skeletal muscle blood flow during exercise.

Study design

Prospective observational study without invasive measurements.

Study burden and risks

No adverse effects of submaximal cycling exercise performed by healthy subjects have been reported in literature, nor in our clinical experience. PD, NIRS and PWD are non-invasive measurements and therefore place no additional burden on the subjects. In order to set intensity for the submaximal exercise test, all subjects perform a maximal cardiopulmonary exercise test at baseline. For healthy subjects (without a cardiovascular condition) there's a very small risk on getting a ventricular arrhythmia or myocardial ischaemia during a maximal exercise test. With the inclusion of electrocardiographic analysis and blood pressure measurements on day 1 during the maximal exercise test, subjects with myocardial ischaemia and ventricular arrhythmias can be identified and excluded.

By performing these measurements, we will be able to evaluate the reproducibility and validity of PD.

Contacts

Public Maxima Medisch Centrum

De Run 4600 Veldhoven 5504DB NL **Scientific** Maxima Medisch Centrum

De Run 4600 Veldhoven 5504DB

Trial sites

Listed location countries

Netherlands

Eligibility criteria

Age Adults (18-64 years) Elderly (65 years and older)

Inclusion criteria

Written informed consent Age 18-50 years Able to perform a maximal exercise test.

Exclusion criteria

Subjects with risk of adverse events according to abnormal findings in physical examination or the Lausanne questionnaire.

Orthopaedic,cardio-vascular, pulmonary, neuromuscular and other diseases limiting exercise capacity.

Study design

Design

Study type: Observational non invasive
Masking:Open (masking not used)Control:UncontrolledPrimary purpose:Diagnostic

Recruitment

NL	
Recruitment status:	Recruitment stopped
Start date (anticipated):	01-02-2016
Enrollment:	38
Туре:	Actual

Ethics review

Approved WMO	
Date:	23-12-2015
Application type:	First submission
Review commission:	METC Maxima Medisch Centrum (Veldhoven)

Study registrations

Followed up by the following (possibly more current) registration

No registrations found.

Other (possibly less up-to-date) registrations in this register

ID: 24988 Source: Nationaal Trial Register Title:

In other registers

Register	ID
ССМО	NL55046.015.15
OMON	NL-OMON24988

Study results

Date completed: 30-06-2016

Actual enrolment: